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SUMMARY 

Stresses were calculated  for  finite-width  orthotropic  laminates with a 
circular hole and remote uniaxial  loading us ing  a two-dimensional f inite- 
element analysis wi th  both uniform stress and uniform displacement boundary 
conditions. Five different  laminates were analyzed: quasi-isotropic 
[0°/+450/9001 Oo, 90°, [0°/9001s, and [+45OI s. Computed results  are pre- 
sented  for  selected combinations of hole-diameter-sheet-width rat io  d/w and 
length-to-width rat io  L/w. 

For small L/w. values,  the  stress-concentration  factors K t n  were sig- 
nificantly  different  for  the uniform stress and uniform displacement boundary 
conditions.  Typically,  for  the uniform stress  condition, the K t n  values were 
much larger t h a n  for  the  infinite-strip  reference  condition; however, for  the 
uniform displacement condition, they were only s l i g h t l y  smaller than for t h i s  
reference. For long strips,  the  differences due to boundary conditions were 
small. 

The results  for long strips  are  also presented  as  width-correction  fac- 
tors,  which relate  the maximum stress  i n  finite-width  laminates to the  corre- 
sponding infinite-sheet value. For d/w 5 0 . 3 3 ,  these  width-correction  factors 
are  nearly  equal  for a l l   f ive  laminates and may  be approximated, w i t h  a maximum 
error of less than 5 percent, by u s i n g  the  quasi-isotropic  case. T h i s  approxi- 
mation is expected to apply to most practical  laminates, provided L/w is s u f -  
ficiently  large. 

INTRODUCTION 

The stresses  at  a fastener hole are  typically  characterized by u s i n g  an 
appropriate  elastic  stress-concentration  factor. For metals,  the  necessary 
stress-concentration  factors  for  finite-size,  isotropic  sheets wi th  holes  are 
usually  available from the l i terature .  However, for composites very l i t t l e  is 
known about stress  concentrations  for  finite-size  orthotropic laminates. The 
purpose of t h i s  paper is to explore t h i s  general problem area  for composites 
and to  present  results  for a broad range of variables. 

The s tudy  was based on a two-dimensional finite-element  analysis of an 
orthotropic laminate w i t h  a circular hole and uniaxial  loading. Five graphite/ 
epoxy laminates which covered a wide  range  of properties were selected  for 
the  analysis;  these  laminates were quasi-isotropic [00/+450/9001 Oo, 90°, 
[0°/900~s, and [ + 4 5 O I s .  Finite-element models  were developed for a wide range 
of hole-diameter-heet-width ratios d/w and length-to-width ratios L/w. 
These  models  were then  analyzed for each laminate using both uniform stress 
and uniform displacement boundary conditions a t  the ends of the model. 



R e s u l t s  are p r e s e n t e d   i n  terms of stress d i s t r i b u t i o n s   n e a r  the hole and 
as elastic s t r e s s - c o n c e n t r a t i o n  factors for specific combina t ions  of d/w and 
L/W for each   l amina te .  

SYMBOLS 

diameter of hole, m 

Young's  modulus i n   x - d i r e c t i o n ,  MPa 

Young ' s   modulus   in   y -d i rec t ion ,  MPa 

shear modulus, MPa 

g r o s s - s e c t i o n   s t r e s s - c o n c e n t r a t i o n  factor , (Uee),,,/sg 

n e t - s e c t i o n   s t r e s s - c o n c e n t r a t i o n  factor , (080) max/Sn 

i n f i n i t e - s h e e t   s t r e s s - c o n c e n t r a t i o n  factor, ( U ~ ~ ) , a x / S g  

l e n g t h  of s h e e t ,  m 

r a d i u s  of hole, m 

polar c o o r d i n a t e s ,  m and  deg 

g ross - sec t ion   nomina l  stress, MPa 

net -sec t ion   nominal  stress, MPa 

width of sheet , m 

C a r t e s i a n   c o o r d i n a t e s ,  m 

P o i s s o n ' s  r a t io  

stress component i n   8 - d i r e c t i o n ,  MPa 

FINITE-ELEMENT ANALYSIS 

F igure  1 shows t h e   g e n e r a l   p r o b l e m   a n a l y z e d   i n   t h i s   s t u d y .  The range of 
sheet s i z e s  and c o n f i g u r a t i o n s  was gene ra t ed  by u s i n g   d i f f e r e n t   c o m b i n a t i o n s  of 
d/w and L/w. S p e c i f i c a l l y ,   s e v e n   v a l u e s  of d/w were used  over the  range 
0.05 5 d/w 6 0.91 , and L/w was taken as 1 , 2, and 10. 

Throughout t h i s  s tudy ,  the h o l e  radius was assumed to equa l   un i ty .  Accord- 
i n g l y ,  the range of d/w r e p r e s e n t e d   v a r i o u s  sheet widths f o r  a s i n g l e  hole 
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s i z e ,   r a t h e r   t h a n  a f i x e d   w i d t h   w i t h   v a r i o u s   h o l e   s i z e s .  The r e s u l t s  would be 
t h e  same for e i t h e r   c h o i c e  of assumptions.  

T a b l e  I presents t h e  elastic c o n s t a n t s  for t h e   f i v e   l a m i n a t e s   a n a l y z e d   i n  
t h i s   s t u d y .  As p r e v i o u s l y   m e n t i o n e d ,   t h e s e   l a m i n a t e s  were s e l e c t e d  to cover a 
broad  range of composite properties. The Oo l a m i n a t e  properties ( r e f .  1 ) were 
used   w i th   l amina t ion   t heo ry  to calculate t h e  elastic c o n s t a n t s  for t h e   o t h e r  
l amina te s .   A l though   t he  [Oo/?450/9C01 l amina te  was c a l l e d  a q u a s i - i s o t r o p i c  
l a m i n a t e ,  its calculated elastic c o n s t a n t s   s a t i s f y  a l l  t h e  cri.terj.a for isot- 
r o p y .   C o n s e q u e n t l y ,   t h e   r e s u l t s   f o r   t h i s   l a m i n a t e  were compared  with isotropic 
s o l u t i o n s  from t h e  l i terature .  

F i g u r e  2 shows the   f i n i t e - e l emen t   mode l s .  The wide-sheet  model shown i n  
f i g u r e  2(a)  is typical of those   ana lyzed .  The h o l e   r a d i u s  was una l t e red   and  
t h e   d e s i r e d   v a l u e s  of d/w and L/w were o b t a i n e d  by removing  elements from 
t h e  mode l   w id th   and   l eng th .   The   na r row-s t r ip   mode l   ( f i g .   2 (b ) )  was t h e   o n l y  
e x c e p t i o n  to  t h i s   p r o c e d u r e .  For t h i s  case, where d/w = 0.91 , a d d i t i o n a l  
re f inement  was needed i n   t h e   n a r r o w e s t   p o r t i o n   o f   t h e   m o d e l .  The cor responding  
model for L/w = 1 0  was g e n e r a t e d  by adding   e lements  to t h e  model l e n g t h   i n  
f i g u r e  2 (b)  . 

Two types of   e lements  were used.  For  the  wide-sheet  model j.n f i g u r e  2 ( a )  , 
l inear -s t ra in   (6-node)   e lements   compr ised   the   reg ion   near   the   ho le  (3R x 5R) : 
uniform-strain  (3-node)   e lements   comprised  the  remainder   of   the   model .  The 
n a r r o w - s t r i p   m o d e l   i n   f i g u r e   2 ( b )   c o n s i s t e d   e n t i r e l y  of l i n e a r - s t r a i n  e!-ements. 
These  models were ana lyzed   u s ing   t he  BEND f i n i t e - e l e m e n t  computer program 
d e s c r i b e d   i n   r e f e r e n c e  2. 

As prev ious ly   men t ioned ,  t w o  d i f f e r e n t  types of l o a d i n g  were cons idered .  
F o r   t h e   f i r s t  case, uni form  x-ax is   t ens ion  was s p e c i f i e d  as a boundary  condi- 
t i o n .  For the   second case, uni form  x-d i rec t ion   d i sp lacement  was t h e   s p e c i f i e d  
boundary  condi t ion  a long  the  end  of   the  model .  The app l i ed   l oad   co r re spond ing  
to  t h i s   u n i f o r m   d i s p l a c e m e n t  case was c a l c u l a t e d  by  summing n o d a l   f o r c e s  on t h e  
end   of   the   model .   For   compar ison ,   the   computed   loca l   (near   the   ho le)   s t resses  
for each case were normalized by the   cor responding   ne t - sec t ion   nominal  stress. 

DISCUSSION OF RESULTS 

R e s u l t s  are p r e s e n t e d   i n  t w o  formats - as stress d i s t r i b u t i o n s   n e a r   t h e  
hole  and as s t r e s s - c o n c e n t r a t i o n   f a c t o r s .  The s t ress  d i s t r i b u t i o n s  are b r i e f l y  
d i s c u s s e d  to i n t r o d u c e   t h e   s t r e s s - c o n c e n t r a t i o n   f a c t o r s .  A s  p r e v i o u s l y  men- 
t i oned ,   t he   l . amina te s ,  as well as t h e   s h e e t   c o n f i g u r a t i o n s ,  were s e l e c t e d  to  
p r o v i d e  a wide  range  of   behavior .  

S t r e s s   D i s t r i b u t i o n s  

S t r e s s   d i s t r i b u t i o n s  are p r e s e n t e d  for each   l amina te ,   u s ing  L/w = 1 0  and 
a range of d/w ratios. F o r   t h i s   l a r g e  L/w v a l u e ,   t h e   s h e e t  was assumed to 
a p p r o x i m a t e   a n   i n f i n i t e l y   l o n g  s t r ip  wi th   un i form remote stress. 



Figure 3 introduces  the  stress  distributions  for  the [0°/+450/9001 
quasi-isotropic  laminate.  Figure  3(a) shows . CJee stresses along the  hole 
boundary and figure  3(b) shows t h i s  stress along the y-axis (0 = goo). The 
008 stresses were normalized by the  net-section nominal s t ress  Sn. For s i m -  
plicity,  these  figures show results  for only  three nonzero d/w values. I n  
figures  3(a) and 3(b),  the dashed curves represent  the  infinite-sheet  solution 
where d/w = 0 (ref.  3). Figure 3(a)  also shows the  stress-concentration  fac- 
tor K, for  the  infinite-sheet case. 

Figure 4 presents  results  for  the Oo laminate. These stress  distribu- 
tions have larger maximum values (Ue0)max  and larger  gradients  than i n  the 
quasi-isotropic  case. (Compare figs. 3 and 4 . )  These differences  are probably 
caused by the  large  ratio of longitudinal-to-shear  stiffnesses  for  the Oo lami- 
nate. (See table I.) Again, the infinite-sheet  results (dashed curves) were 
calculated u s i n g  equations from reference 3 and the  material  properties from 
table I. 

The stress  distributions  for  the !IOo laminate  are  plotted i n  figure 5. 
I n  contrast  to  the  previous two cases,  the  largest  stress magnitude is associ- 
ated w i t h  the  compressive s t ress   a t  9 = Oo, rather than  the  tensile  stress  at  
0 = goo. A s  expected,  the [0O/9O0Is results i n  figure 6 are approximately 
equal  to  the averages of those shown for  the Oo and 90° cases. 

The stress  distributions  for the [+45OI  1ami.nate  have some unusual fea- 
tures. Figure 7(a)  shows that ( 0 0 0 ) ~ ~ ~  occurs near F) = 60° for d/w 5 0.5, 
rather than at  the  usual  location on the  transverse  axis (0  = g o o ) .  Also,  the 
location  for t h i s  peak stress depends on the d/w ratio. Furthermore, f ig-  
ure 7 (b )  shows that  the age away  from the  hole may  be s l i g h t l y  larger than 
at  the hole boundary (r/R = 1 . O )  . 

Stress-Concentration  Factors 

Figure 8 shows results €or the  quasi-isotropic  laminate;  net-section 
stress-concentration  factors K t n  are  plotted  against d/w for L/w = 1 0 .  
For comparison, t h i s  figure  also  includes  results from the  literature on iso- 
tropic  str ips w i t h  a circular hole and uniform stress   ( refs .  4 and 5) .  present 
results and those from the  literature agree closely over the range of f in i t e  
widths.  Furthermore, the curve drawn through these  results appears to agree 
w i t h  Km = 3. 

Figure 9 presents a l l  the K t n  results  for the  quasi-isotropic  laminate. 
For each L/w value, two curves  are  plotted - one for  the uniform stress  
boundary condition and  one for  the uniform displacement boundary condition. 
Results  for  the  stress boundary condition were much  more sensitive  to L/w 
than were the uniform displacement results. Below L/w = 2, the stress bound- 
ary  condition  resulted i n  K t n  values much higher  than  the uniform displace- 
ment results;   at  L/w 2 2,  the  results were about the same. Numerical results 
are given i n  table 11. 

The K t n  results  for the Oo laminate  are  presented i n  figure 1 0  and 
table 111. For L/w = 10 ,  s tress and displacement boundary conditions 
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produced the same K t n  values.  Therefore,  the L/w = 1 0  curve is a good 
approximation to the infinite-strip  case,  as assumed previously. The curves 
for L/w = 1 and 2 l i e  above or belaw t h i s  infinite-strip curve, depending 
on whether the  sheet is loaded by the  stress or displacement boundary condi- 
tion. The differences between these  curves  are much larger than those shown 
previously  for  the  quasi-  isotropic  laminate. 

The Oo laminate was also used to  verify the  finite-element procedures. 
Th i s  case was believed to be the most severe of those  considered because it had 
the  largest  stress  gradients. The results for  the L/w = 1 0 ,  d/w = 0.05 case 
were  compared wi th  the  infinite-sheet  stress-concentration  factor, K, = 6.430,  
from reference 3. For t h i s  comparison, the computed K t n  was converted to  
gross-section  stress-concentration  factor K t g .  The uniform displacement and 
uniform stress  conditions  yielded K t g  values of 6.471 and 6 . 5 1 7 ,  respec- 
tively, only 0 . 6  percent and 1 . 3  percent  larger than  K,. 

Figure 1 1  and table I V  show results for  the 90° laminate. For t h i s  
extreme case,  the K t n  values  are  smaller than for  the two previous  laminates. 
Also, the  curves for  different L/w values  are  rather  closely grouped. T h i s  
indicates a weak L/w influence, which was attributed  to  the law extensional 
modulus for  the 90° laminate. 

The results  for  the [Oo/9O01 laminate  are  presented i n  figure 1 2  and 
table V. The L/w influence i n  figure 1 2  is larger than for  the isotropic 
case b u t ,  as  expected, it is intermediate  to  the extreme behavior displayed 
by the Oo and 90° laminates. The Ktn values  for  the [Oo/9001 laminate are 
nearly averages of those  for  the Oo and 90° laminates. 

The Ktn values  for  the [ k45OI laminate,  presented i n  figure 13 and 
table V I ,  differ somewhat  from previous results. For d/w 6 0.50, the K t n  
results of figure 13 are based on values of (Oef l )max  located near 8 = 60° 
on the hole boundary.  These K t n  values  are shown by solid symbols.  For 
very narrow s t r ips  (d/w > 0.50) , the computed K t n  values  are based on the 
usual  location of 0 = 90° for ( U e e )  max. Note that even for L/w = 1 , the 
curve for the uniform displacement  case is quite  close  to the infinite-strip 
(L/w = 10) case, i n  contrast  to the behavior for  the uniform stress case. 
Therefore, the uniform displacement  case  provides  the better approximation to 
the infinite-sheet case. T h i s  conclusion also  applies  to  the  other  laminates 
analyzed . 

Figure 14 is a comparison of the  infinite-strip curves for  the  five lami- 
nates. For d/w = 0,  the K t n  values range from 2.48  to  6 . 4 3 ,  compared w i t h  
3 . 0  for  the  quasi-isotropic  laminate. However, for d/w = 1 , a l l   f i ve   ex t r ap  
olated curves converge to a narrow range of about 1 . 9  to 2 . 3 .  Comparison  of 
the Oo and 90° curves shows that  the d/w influence on K t n  is quite  differ- 
ent  for  the two laminates. The Oo curve has Ktn values from 6 . 4 3  to  2 . 3 ,  a 
range larger than 60 percent of the maximum Ktn. I n  contrast, d/w has less  
influence  for  the 90° laminate; its Ktn curve shows Ktn from 2.48  to  1 .9 ,  a 
range of only about 20 percent of  maximum. 

To  show  how d/w influences (Uee)max, the results from figure 14 were 
replotted i n  figure 15. For comparison, the  values of (0ee)max i n  t h i s  
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figure were normalized by Corresponding infinite-sheet values of maximum stress 
SgKw for each laminate.  Therefore,  the  curves i n  figure 15 can be interpreted 
as width corrections which relate  the  finite-width values to the 
corresponding infinite-sheet values. 

I n  figure 15, a l l   f ive  curves emanate  from (Oee)max/SgKw = 1 and diverge 
for  larger values of d/w. However, these  curves  diverge  gradually,  despite 
the wide range of orthotropic laminate properties  that they  represent. Sur- 
pr i s ing ly ,  for d/w of less  than 0.33 , a l l   f ive  curves  could be approximated 
by the  isotropic curve, w i t h  a maximum error of less than 5 percent. T h i s  is 
believed  to be significant because the  present range of laminate  properties and 
the range d/w 2 0.33 are expected to cover most practical  cases. 

CONCLUDING REMARKS 

Stresses were calculated  for  finite-width  orthotropic composite sheets 
w i t h  a circular hole and remote uniaxial  loading u s i n g  a two-dimensional 
finite-element  analysis. Five different  laminates were analyzed:  quasi- 
isotropic" [0°/+450/9001 Oo, 90°, [Oo/9O01 and [?4501 s. The effects of 
sheet width and length and the  differences between uniform stress and uniform 
displacement boundary conditions were studied.  Stress-concentration  factors 
are presented  for  various combinations of hole-diameter-sheet-width rat io  d/w 
and length-to-width ratio,  L/w. 

For small  values of L/w, uniform stress and uniform displacement bound- 
ary  conditions produced significantly  different  stress-concentration  factors, 
especially  for  the Oo laminate.  Typically, results  for  the uniform stress 
boundary condition were much larger than  for  the  infinite-strip  reference  case; 
i n  contrast,  for uniform applied displacement the results were only sl ightly 
smaller than t h i s  reference. For large L/w values,  differences due to bound- 
ary  conditions were small. 

Anisotropy had a strong  influence on the  stress-concentration  factors  for 
long s t r ips  w i t h  small d/w values. A t  d/w = 0,  the K t n  values ranged  from 
6.43 for  the Oo laminate to 2.48  for  the 90° laminate, compared w i t h  3.0 for 
the  quasi-isotropic [0°/+450/9001 laminate. By contrast,  for d/w = 1 , a l l  
extrapolated K t n  curves converged to a narrow range of about 1 .9  to  2.3. 

The results  for long s t r ips  were also  presented  as  width-correction  fac- 
tors,  relating  the maximum stress i n  finite-width  laminates  to its correspond- 
ing infinite-sheet value. For d/w 5 0 . 3 3 ,  these  width-correction  factors were 
nearly  equal  for a l l   f ive  laminates and  may  be approximated by us ing  the  quasi- 
isotropic  case, w i t h  a maximum error of less than 5 percent. This  approxima- 
tion is expected to apply to most practical  laminates, provided L/w is 
sufficiently  large. 

Langley Research  Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
April 1 8 ,  1979 
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TABLE  I .- LAMINATE  CDNSTANTS 
~. ~ " ~~~ ~~ ~~ ~ ~ . . ." 

Elastic  constants 

E,, vxY G w ,  MPa  En,  MPa 
Laminate 

~~~ . ~ . -  . . . . . . . . . - - - . . . 

Quasi-isotropic 0.31 0 22 090  57 890 57 890 
[ 0~/+45~/90~1 

00 0.380 6 412 10 890 146 900 
~ ~~ . ". . ." .. . ". ~ 

. . -~ ~ .. . . . "" ~ . _" - -: 

goo 6 412 I 0.028 1 146 900 10 890 
~~~ . . . . . . . .  ~ ~ ~-~~~ . 

1 O0/9O0I 

0.735 37 770 22 250 22 250 [r45°1 

0.052 6 412 79 500 79 500 
- ~ ." . . ". .. - .. . ~ - .. . . . -. 

~ ~ ~~~ . . . . .  .. ~ . .. ~~~~~ ~ 

TABLE  I1 .- STRESS-CONCENTRATION  FACTORS  ZDR  THE  QUASI-ISOTROPIC  LAMINATE 

Diameter-to-width  ratio,  d/w 
L/w  Loading ~ .. . . . " 

(a) 

----- 1.91 6 2.008 2.21 9 2.468 2.71 4 2.850 D 

----- 4.451 3.199  2.759  2.676 2.770 2.865 S 

0.91  0.67  0.50  0.33  0.20 0.10 0.05 
~~ ~ . ~- "~ " ~ .  .. 

1 " 

S 

2.18q-2.1171 2.04(11  2.328 2.517 2.728  2.854 D 
2.193 I 2.134 I 2.052J 

2.332 2.520 2.729  2.854 
2 - - ~ "_ 

" ~"_L_ ~~ 

S ""- 

2.040 2.114  2.180  2.326  2.516 ""_ "-" D 

2.040  2.114  2.180  2.326  2.516 ""_ 
10 

- 
denotes  uniform  stress  boundary  condition; D denotes  uniform 

displacement  boundary  condition. 
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TABLE 111.- STRESS-CONCENTRATION  FACTORS EOR THE Oo LAMINATE 

.. -" - ~ ~ 

Diameter-to-width ratio, d/w 
L/w ~ ~ Loading 

(a) 0.05 0.1 0 0.91 0.67  0.50  0.33  0.20 
. . . " . . -~ . ." I ~~ I "  ." .. 

.2 1.: .-. . D - .  -I =-=.. . ~ . 

S 

3.06 4.638  5.102  5.422 5.642  5.967  6.191 S 

----- 2.667  2.907  3.493  4.384 5.462 6.042 D 

----- 10.598 8.190 7.215  6.623  6.283  6.281 
1 

6.147  2.538 3.1 79 3.648  4.360 5.111 5.804 

S ""- ""- 5.322 2.609 3.480  4.054 ----- 
10 

D ""- -"" 5.322  2.609  3.480  4.054 ----- 
denotes   uniform stress boundary   condi t ion ;  D denotes   uniform 

disp lacement   boundary   condi t ion .  

TABU 1V.- STRESS-CONCENTRATION  FACTORS  FOR THE 90° LAMINATE 

~ ~. ~~ 

Diameter-to-width 
Loading 

(a )  0.33  0.20 0.1 0 0.05 
.- ~ 

S 

2.016  2.109 2.258  2.356 D 

2.016  2.109  2.258  2.356 S 

1.980  2.096 2.255  2.355 D 

2.088 2.130 2.265  2.358 

2.1 09 ----- 
2.1 09- ----- 

~ ~ . ~ . ~  

.~ 

. "  s-r ""_ ""- 
~ ~~ 

D ""- ""e 

~-~ ~ ~- ~~~ 

:at io,  d/w 

0.50 1 0.67 I 0.91 

2.1 38 I 2.375 I ----- 
1.889 

1.959 

1.959 
~~ 

1.959 

1.959 

1.866 

1.959 

1.959 

1.959 

1.959 

""- 
1.989 

1.987 

1.988 

1.988 

denotes   uniform stress boundary   condi t ion ;  D denotes   uniform 
disp lacement   boundary   condi t ion .  
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TABU V.- STRESS-CONCENTRATION  FACTORS EUR THE [0°/9001s LAMINATE 

S ""_ ""- 3.991 

3.991 

----- 3.165 2.826 

3.165 2.826 
10 

D "-" ""- ----- 

""_ 
""- 
2.400 

2.31 3 

2.340 

2.340 

denotes   un i form stress boundary   condi t ion ;  D denotes   un i form 
d i sp lacemen t   boundary   cond i t ion .  

TABLE VI .- STRESS-CONCENTRATION  FACTORS  FOR THE [+45OI LAMINATE 

deno tes  uniform stress boundary   condi t ion ;  D denotes   un i form 
d i sp lacemen t   boundary   cond i t ion .  

b ( ~ e e ) ~ ~ ~  o c c u r r e d  a t  8 = 570. 
'(Uee),,, o c c u r r e d  a t  8 = 63O. 

10 
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F i g u r e  1 .- S h e e t   c o n f i g u r a t i o n   a n d   l o a d i n g .  
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I I' L/2 = 40R I 

(a) Wide-sheet model. 

F i g u r e  2. - F i n i   t e - e l e m e n t  models. 
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(b) Narrow-strip model. 

Figure 2. - Concluded. 
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(b) Stress along  y-axis (8 = 900) . 
Figure  3 . -  Stresses i n   q u a s i - i s o t r o p i c   l a m i n a t e   w i t h   u n i f o r m  stress boundary  condi t ions;  L/w = 10.  
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(a)   Stress   a long  hole   boundary.  (b)  S t ress   a long   y-ax is  (8 = 900). 

Figure 4.-  Stresses   i r .  O o  laminate   with Uniform s t ress   boundary   condi t ion ;  L/w = 10.  
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(a )  Stress along hole boundary. (b)  Stress along  y-axis (0  = 900) .  

F igure  5.- Stresses i n  90° l amina te   wi th   un i form  s t ress   boundary   condi t ion ;  L/W = 10. 
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(b) Stress along  y-axis (0  = 900) .  

F igure  6.- Stresses i n  [O0/9O0Is l amina te  wi th  uniform stress boundary  condition; L/w = 10. 
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(b)  Stress along  y-axis (8 = 900) .  

F igure  7.- Stresses i n  [ - + 4 5 O I s  laminate   with  uniform stress boundary  condition; L/w = 70. 
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Figure 8 . -  Stress-concentration  factors  for a quasi-isotropic  laminate w i t h  
a circular hole and uniform stress  boundary condition; L/w = 10. 
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Figure 9.- Stress-concentration  factors for a quasi-isotropic 
laminate w i t h  a circular hole. 

20 ' 



8 

6 

Ktn 4 

2 

0 

OUniform stress boundary condition 

Uniform displacement boundary condition 

0 K, = 6.43  (ref.  3) 

I 1 I I I I 1 1 I I 1 
0 .2 .4 .6 .8 1.0 

d/w 

Figure 1 0 . -  S t r e s s - c o n c e n t r a t i o n   f a c t o r s   f o r  a Oo laminate 
with a c i r c u l a r   h o l e .  
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Figure 11.- Stress-concentration  factors  for a 90° laminate 
w i t h  a circular hole. 
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Figure 12.- Stress-concentration  factors for a [0°/900]s laminate 
wi th  a circular hole. 
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13.- Stress-concentration  factors  for a Ef4501 laminate 
w i t h  a circular hole. 
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Figure  14.- S t r e s s - c o n c e n t r a t i o n  factors  for o r t h o t r o p i c   l a m i n a t e s   w i t h  
a c i r c u l a r   h o l e   a n d   u n i f o r m  stress boundary   cond i t ion ;  L/w = 10.  
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F i g u r e  15.- Normalized maximum stress i n   o r t h o t r o p i c   l a m i n a t e s   w i t h  a 
c i r c u l a r   h o l e   a n d   u n i f o r m  stress boundary   condi t ion ;  L/w = 10.  
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